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Abstract

We describe Orpheus, our vision for a de-
velopment and veri�cation environment for

ight critical hardware devices. Orpheus pro-
vides an arrangement of translation tools that
are self-checking and that integrate synthe-
sis, high-speed simulation, and formal anal-
ysis. Implementation of the Orpheus ar-
chitecture would allow tight integration of
these formerly distinct activities and facil-
itate the use of formal analysis in 
ight-
critical system certi�cation. Further, 
exibil-
ity in the choice of design representation pro-
vided by Orpheus would support both current
design practice and hardware/software code-
sign. This paper describes the notion of self-
checking tools, the Orpheus tool architecture,
and how commercially-available tools could be
used to implement such a system.

1 Current Practice

1.1 Background

Certi�cation of 
ight critical systems is to-
day a labor-intensive, manual process. Veri�-
cation and certi�cation of 
ight critical soft-
ware and application-speci�c integrated cir-
cuits (ASICs) require an almost heroic e�ort
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of intense inspections and process documenta-
tion. The complexity of systems and devices
will increase, because increases in cockpit au-
tomation and application integration o�er im-
portant safety bene�ts, and because astonish-
ing improvements in digital computing tech-
nology can potentially improve performance
and decrease cost. The current approach to
veri�cation and certi�cation may not be ade-
quate in the face of this increased complexity.
In order to reap fully the safety bene�ts of
these technological advances we must develop
new methods for veri�cation and certi�cation
of 
ight critical devices.
Several recent developments permit a supe-

rior approach to veri�cation and certi�cation.
First, 
ight critical ASICs can now be de-
veloped using standard hardware description
languages (HDLs) because recent advances in
equivalency-checking tools provide an inde-
pendent check that synthesis preserves func-
tional correctness. Second, theorem proving
tools have emerged that enable mechanical
formal analysis of device properties. Third,
translation tools are emerging that allow the
integration of mathematical analysis into the
conventional fabrication/simulation-based de-
velopment environment.

1.2 Flight Critical HDL Use

Modern hardware devices are typically devel-
oped using one of several hardware description
languages (HDLs), such as Verilog or VHDL.
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Figure 1: Fabrication toolsets for 
ight critical
HDL provide self-checking

In the area of 
ight critical hardware, how-
ever, this has been the case only within the last
few years. The delay in adopting these design
techniques has been a result of concerns about
the reliability of the process by which an im-
plementation expressed in an HDL is used to
fabricate the actual device. The complexity of
HDLs means that tools that manipulate HDL
designs are complex. As a result, the move to-
ward using standard HDLs was hindered be-
cause requirements could not be traced to the
device without trusting the synthesis tools and
supporting libraries.

Fortunately, tools now exist that allow
highly-dependable HDL fabrication. Figure 1
shows how 4 fabrication-oriented tools can be
used to make the fabrication process immune
from corruption by a fault in any single tool.
A synthesis tool converts an HDL design into
a netlist, and a place-and-route tool converts
the netlist into CIF data that can be fabri-
cated. The CIF data is checked against the
netlist using an LVS (layout-versus-schematic)
tool. The netlist is checked against the VHDL
model using equivalence-checking tools.

The dependability of the connection be-
tween the design and physical device a�orded
by an independent tool chain as presented in
Figure 1 has changed how 
ight critical hard-
ware is developed. Incorporation of this in-
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Figure 2: Designers typically build two device
models

novation into the development process has al-
lowed developers of airborne hardware to ben-
e�t from modern design practices such as syn-
thesis and optimization.

1.3 Device simulators

It is commonly the case that a high-speed sim-
ulator is developed in parallel with an HDL
model of a device. There are several reasons
for this.

� Execution of the VHDL model is often too
slow to support testing activities. This is
especially true for large test suites such as
are typical for regression testing.

� Software or other parts of the system that
rely on the device must be developed be-
fore the HDL model is complete.

High performance is critical for device sim-
ulators, so simulators of this type are typically
constructed using a high-level language (HLL)
such as C or C++ for which there are compil-
ers that generate e�cient code1.

1Multiple simulators are routinely built during de-
vice development. For example, a microcoded mi-
croprocessor's simulators would typically include both
an instruction-level simulator and a microarchitecture
simulator. The device simulator we are describing here
is a low-level, cycle-accurate simulator.



The required functionality of complex com-
putational devices is typically implemented us-
ing a combination of hardware and software,
and an early design decision in the develop-
ment of these systems is where to draw the
line between these two kinds of implementa-
tions. The distinction between hardware and
software in implementions adds complexity to
these systems, since it requires that an inter-
face be de�ned. Furthermore, this interface
between hardware and software can change
during a design cycle as implementation is-
sues make clearer the tradeo�s between im-
plementing various functions in hardware or
in software. It would therefore be desirable
to develop hardware and software using the
same languages and tools, and delay decisions
about the exact form in which they will be im-
plemented. Designing could be done, for ex-
ample, using C. Functions whose design will
ultimately appear in hardware can be fabri-
cated using the HDL representation. This has
the potential to simplify development e�orts
since no hardware/software interface need be
considered during development.

Figure 2 shows the artifacts resulting from
current practice: two models that are expected
to be identical in substance but that are writ-
ten in di�erent languages. This is typical of
the current state-of-the-art design practice for
airborne hardware devices.

2 Formal Analysis

Current certi�cation processes provide some
hard-to-quantify assurance that critical air-
borne hardware devices meet their require-
ments. Teams of inspectors \walk through" a
design, assessing whether the implementation
indeed meets the stated requirements. This
process generates a paper trail that documents
the level of e�ort of the inspectors and ensures
that all relevant parts of the design have in

fact been examined against the requirements.
For complex designs this type of examination
is very labor-intensive, but there is currently
no viable alternative. Even so, the quality of
the device is, to a large extent, measured in-
directly via the inspection process.
Several aspects of the current process for de-

veloping and certifying safety-critical devices
are not ideal. It would be better if certi�ca-
tion practice measured the quality of the de-
vice directly, rather than measuring the e�ort
applied to the veri�cation. Further, as the
trend is toward using more complex devices for
critical airborne activities, current veri�cation
and certi�cation threaten to become increas-
ingly inadequate. It has long been hoped that
mathematical reasoning | rather than careful
documentation of the e�orts of inspectors |
could ferret out design 
aws more e�ectively
than manual inspections. The potential for
establishing by direct, formal reasoning that
a device meets its requirements has obvious
appeal, and is increasingly recognized as a vi-
able veri�cation methodology by certi�cation
authorities.
Mathematical proofs about computing de-

vices tend to be very complex and detail-
laden, which makes them impractical to de-
velop or check by hand. There has been con-
siderable research applied to the development
of automated theorem provers that are ca-
pable of checking and/or generating mathe-
matical proofs. Leading tools include ACL2,
HOL, and PVS, and each is increasingly �nd-
ing application in industrial settings where
safety or wide product distribution makes es-
tablishing design correctness imperative. Var-
ious veri�cation projects have used theorem
provers to analyze computer system models
[1, 2, 4, 6, 8, 13, 14, 17]. A dramatic re-
cent example of the possibilities of applying
formal analysis to computing systems is the
ACL2-checked veri�cation of AMD's Athlon
(formally \K7") 
oating-point operations [16].
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Figure 3: Formal analysis requires designers
build yet another model.

The increased industrial use of automated
theorem provers results from improvements in
the tools themselves and increased availability
of reusable libraries of results [7, 9, 16]. Al-
though we expect these tools will be increas-
ingly common, poor integration with other as-
pects of the design environment remains an
impediment to their adoption [12]. We be-
lieve that formal analysis will become perva-
sive only when the tools are properly integrated

with other aspects of the design environment.

Figure 3 identi�es the artifacts resulting
from a process augmented to support formal
veri�cation: three models of the same device
written in three di�erent languages each sup-
porting its own development or veri�cation ac-
tivity. In a recent e�ort Rockwell Collins de-
veloped three separate device models | one
each for fabrication, simulation, and formal
analysis | in order to bene�t from each of
these activities [11]. However, the high cost of
building and maintaining models alone makes
this approach unsustainable. Even more trou-
blesome is that the multiple models might be
inconsistent with each other, so a property
proved about the formal model or the observ-
able behavior of the simulator used to develop
other parts of the system might not be re-

ected in the actual fabricated device.
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Figure 4: Executable formal models reduce the
number of models

3 Orpheus

We propose a comprehensive development
and veri�cation environment for safety-critical
hardware devices called Orpheus. In Greek
mythology, Orpheus subdues the fearsome,
three-headed, dog-like Cerebus. As we
have seen, veri�cation and certi�cation of
increasingly-complex safety-critical devices re-
quires us to overcome another three-headed
challenge: to support device fabrication, high-
speed simulation, and formal analysis in an in-
tegrated way. Orpheus does so without requir-
ing the development of multiple models that
are expensive and possibly inconsistent. The
Orpheus approach can be integrated into cur-
rent approaches for 
ight critical device devel-
opment. The Orpheus tools are self-checking,
so as to guarantee that no single translation
tool can introduce an error into the veri�ca-
tion process. The approach allows 
exibility
of design paradigm: it supports HDL devel-
opment, hardware/software codesign, and de-
signs derived from formal speci�cation.

3.1 Reducing Three Models to

Two

In part to address the issue of multiple distinct
models, Rockwell Collins recently developed
techniques that allow formal models written
in a particular style in the ACL2 logic to be



compiled into C for use as a high-speed simu-
lator [10, 18]. This work e�ectively combines
the formal and simulator models, thereby re-
ducing the number of models from three to
two. Figure 4 shows the impact of this inno-
vation. The integration increases con�dence
in the validity of the uni�ed model, since the
same model is used both as a simulator and
as a target of formal analysis. This impor-
tant capability|high speed execution of for-
mal logic de�nitions|has since been added to
two theorem proving systems:

� A recent PVS extension provides a trans-
lator from PVS functions into Common
Lisp. Rockwell Collins' preliminary tests
using a version of the benchmark from [18]
in PVS 2.3 [15] indicate that execution
speeds are within an order of magnitude
of the speed of a model written conven-
tionally in C. We expect that PVS will
ultimately develop the capability to inte-
grate models expressed in the PVS logic
into other tools.

� Single-threaded objects have been added
to ACL2 2.4 and provide for high-
speed execution of certain de�nitions [5].
Single-threaded objects are an extension
of the notion of ACL2 \state" that per-
mits the introduction of user-de�ned state
elements. ACL2 enforces syntactic re-
strictions on the use of single-threaded
objects to guarantee that the optimiza-
tions are legitimate. Rockwell Collins'
experiments suggest that complex de-
vice models can be expressed despite the
syntactic restrictions enforced on single-
threaded objects, indicating that these
restrictions do not make the ACL2 lan-
guage impractical. Rockwell Collins has
recently shown that ACL2 code can be
integrated with other tools [18].
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Figure 5: Formal models could provide a sin-
gle, uni�ed model

3.2 Reducing Two Models to

One

An approach has recently emerged that poten-
tially allows the integration of high-speed sim-
ulation models and device designs written in
HDL. Several commercial tools are now avail-
able to translate high-level language (HLL)
models into HDL models suitable for fabrica-
tion. Among the leading tools of this type
are CynApps' C++-to-Verilog converter and
C level's C-to-HDL converter, which gener-
ates either Verilog or VHDL. These tools pro-
mote an HLL-based design methodology that
integrates simulation and fabrication. The ex-
istence of such tools and the emerging push
for system level design and hardware/software
codesign practices suggest that the commer-
cial world will continue to develop and improve
these tools.

The ability to compile a formal model into a
simulation model, as described above, reduces
the three models to two. Figure 5 suggests
an obvious way to reduce the two models to
one, by compiling the simulation model into
a fabrication model expressed in an HDL. We
discuss in Section 3.4 our initial testing of one
of these tools, C level's C-to-HDL tool, and
this experience suggests that Orpheus may be
a realistic path for some applications.
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3.3 Closing the Loop with Or-

pheus

Although the tools outlined above allow the
translation of high-level artifacts to HDL, and
while such a process supports methodology
changes that could reduce design errors, there
are problems with using these tools for 
ight
critical applications. First, the process out-
lined above requires that device development
be accomplished by constructing a model or
speci�cation in formal logic. This is impracti-
cal, as hardware development is most appro-
priately done in an HDL or, in the case of
hardware/software codesign, in an HLL.
The second issue is tracibility. Speci�cally,

there must be a way to trace the requirements
to the device through the tools. This issue is
analogous to the one discussed in Section 1.2
that has until recently bedeviled those who
wished to use an HDL for 
ight critical hard-
ware design. Note that, unlike the fabrica-
tion tools of Figure 1, the compilation tools
described in Figure 5 are not arranged to be
self-checking. As a result the two compilers
employed in this process would have to be
thoroughly vetted before they could be used
in a process for developing 
ight critical de-
vices, which is problematic.

The Orpheus system addresses these two
important issues by adding to the chain an-

other tool, amodel-generator, that converts an
HDL design into a formal model. Figure 6
shows how the Orpheus tools are arranged.
The translators form a circle in which a rep-
resentation is converted in turn into each of
the other representations and ultimately back
into its original representation language. For
example, a device model could be developed in
an HDL that supports fabrication. The model-
generator then creates a formal model that can
be analyzed using a theorem prover. Using
executable formal models techniques, the for-
mal model is translated into an HLL model
that supports high-speed simulation. Finally,
the HLL model is translated back into HDL,
and shown to be equivalent to the initial HDL
model using an equivalency checker of the kind
used in the HDL fabrication process.
There is only a single model, yet three

distinct device representations are involved
to support the three di�erent uses: fabrica-
tion, high-speed simulation, and formal analy-
sis. These three activities support each other,
both for model validation and in the fabrica-
tion/veri�cation process, because they involve
the single model in di�erent ways.
As previously discussed, although the nec-

essary formats can be generated without com-
pleting the circle of translations, the question
of translation correctness remains open. The
certi�cation of 
ight critical devices must ad-
dress this issue. If the circle is completed, and
the initial design and �nal design are shown
equivalent, then each representation of the de-
sign is guaranteed correct so long as at most
one of the tools has erred. Much as the fab-
rication tools diagrammed in Figure 1 are ar-
ranged to be self-checking, so too are the Or-
pheus translation tools. Even if more than one
tool errs, the probability of catching the error
is still very high since otherwise the multiple
mistaken tools would have to fail in ways that
mask each other's errors.
This kind of self-checking tool arrangement



provides a very strong argument for the ab-
sence of translator-induced errors, and makes
this kind of development practical just as mod-
ern self-checking fabrication tools permit HDL
use in safety-critical devices. Orpheus there-
fore provides a framework for tight and highly
reliable integration of formal analysis, simula-
tion, and fabrication.

3.4 Orpheus Translation Circle

Example

To assess the technical feasibility of the Or-
pheus approach, we have done a small exper-
iment with using current versions of Orpheus
components in a manner consistent with the
tool arrangement of Figure 6.

As discussed previously, one of the advan-
tages of Orpheus is that it allows a developer
to use any of the representations for his de-
vice. We might expect VHDL to be the lan-
guage of choice for hardware designers, while C
might be preferred for hardware/software co-
design. This experiment begins from a formal
ACL2 model of an interrupt controller that
forms part of a proprietary device developed
by Rockwell Collins. We will navigate around
the Orpheus circle to generate a simulation
model, a VHDL model, and a second formal
model. We have already discussed the bene�ts
accruing from these di�erent representations.
The point of the experiment is to observe that
the two formal models have su�cient similari-
ties in structure, complexity, and level of detail
to indicate that a proof of their equivalence |
and therefore a self-check of all the transla-
tions | is feasible.

The Common Lisp model of this device
uses a macro package developed by Rockwell
Collins to ease modeling in Common Lisp.
The line

(ST. SYNC1 = (& (ST. SYNC0) (HxFFDF)))

expresses the following behavioral detail:
SYNC1 is an element of the machine state,
a register. It is updated each clock tick with
the result of applying a constant bit-mask to
another state variable, SYNC0.

We also wish to simulate this device. We
might choose merely to execute the Common
Lisp code. However, there would be two dis-
advantages to that approach. First, it would
be slow. Our experiments with running ap-
plicative Common Lisp models indicates that
these models execute roughly 100 times slower
than equivalent C language models [18]. Sec-
ond, it is di�cult to integrate raw, applicative
Common Lisp into other tools.

Rockwell Collins has been working on this
challenge for two years and, as described
above, has sped applicative Common Lisp ex-
ecution and integrated this code into other ap-
plications. This approach, broadly called \ex-
ecutable formal models," is outlined in two
recent publications [10, 18]. Using these op-
timizations and a Lisp compiler, we gener-
ate a C program that executes at roughly the
same speed as hand-coded C, and can be inte-
grated with other software. Rockwell Collins
in the past has integrated code of this type
into various simulation and development envi-
ronments [18].

We apply this technique to the example
above. The line of the resulting C code that
corresponds to the given line of Common Lisp
reads as follows:

V12= (D.SYNC1 = ((((((V11)), Q.SYNC0)) &

((-(33))))),((V11)));

We also wish to fabricate this device. To
do so we have applied a C-to-HDL tool (devel-
oped by C level) to convert the auto-generated
C program produced into VHDL. Many trans-
formations are done, such as converting vari-
ables in the C code that maintain state into
registers in the VHDL. The line of C code



shown above translates into the following line
of VHDL:

D_var (SYNC1_2'range) := (Q_var (SYNC0_2'range)

and "1111111111011111");

Ultimately, we wish to fabricate devices
from VHDL using the approach outlined in
Figure 1. We applied a Synopsys VHDL syn-
thesizer to this VHDL code, and the result ap-
pears correct. As described in Section 1.2, it is
this synthesis step from VHDL that current-
available tools such as the Chrysalis equiva-
lence checker can verify.
We really want to check much more than

this �nal step. We want to verify that the syn-
thesized design implements the formal model
with which we began, so we complete the cir-
cle with a model-generator developed by ORA
[2, 3]. This tool currently generates a de-
scription in �rst-order logic, rather than ACL2
code, and there are other modest problems
related to di�erences between the VHDL li-
braries assumed by the C level tool and the
libraries assumed by the ORA tool. How-
ever, with minor manual changes to the VHDL
needed to overcome the library issue, we were
able to use the model-generator to construct a
speci�cation in �rst-order logic. In this nota-
tion, the value assigned to SYNC1 is:

(slice(s.q, 79, 64) and

flip(shift(vector("1111111111011111"), 78))))

The \slice" expression denotes the 16-bit
slice of vector q that, by de�nition, represents
SYNC0. The \flip" expression is of course the
mask. (It is \
ipped" because q has been de-
�ned to run down from 79 to 64 rather than
up from 64 to 79.) Although it is expressed
in a di�erent syntax (i.e. Larch/VHDL rather
than ACL2) the generated formal model corre-
sponds term-by-term to the original Common
Lisp (ACL2) model.
Sophisticated digital design, simulation and

test-generation, and machine-checked formal
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Each Design Activity

analysis, each individually pose technical chal-
lenges that are not solved by using the Or-
pheus approach. However, Orpheus provides
a framework for integrating these separate do-
mains, and we believe that the simple exper-
iment reported here indicates that this novel
technical approach can succeed.

4 Summary

Current veri�cation and certi�cation of de-
vices appears increasingly inadequate in the
face of increasing complexity of 
ight critical
systems. Figure 7 summarizes the Orpheus
approach. Orpheus supports hardware de-
velopment and hardware/software codevelop-
ment in a way that allows for formal analysis,
fabrication, and high-speed simulation. The
Orpheus tools are self-checking, just as mod-
ern HDL fabrication tools are, to insure their
reliability. Orpheus supports a veri�cation ap-
proach that forms the basis of a superior certi-
�cation approach that provides a way to meet
this looming challenge.
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